\(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 (A+C \cos ^2(c+d x)) \, dx\) [143]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 246 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {4 a^3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (143 A+105 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{231 d}+\frac {4 a^3 (143 A+105 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{231 d}+\frac {8 a^3 (44 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{385 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d} \]

[Out]

4/5*a^3*(7*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/23
1*a^3*(143*A+105*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/
385*a^3*(44*A+35*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/11*C*cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^3*sin(d*x+c)/d+4/33
*C*cos(d*x+c)^(3/2)*(a^2+a^2*cos(d*x+c))^2*sin(d*x+c)/a/d+2/231*(33*A+35*C)*cos(d*x+c)^(3/2)*(a^3+a^3*cos(d*x+
c))*sin(d*x+c)/d+4/231*a^3*(143*A+105*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3125, 3055, 3047, 3102, 2827, 2719, 2715, 2720} \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {4 a^3 (143 A+105 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{231 d}+\frac {4 a^3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^3 (44 A+35 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{385 d}+\frac {2 (33 A+35 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{231 d}+\frac {4 a^3 (143 A+105 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{231 d}+\frac {4 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{33 a d}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}{11 d} \]

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*(A + C*Cos[c + d*x]^2),x]

[Out]

(4*a^3*(7*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^3*(143*A + 105*C)*EllipticF[(c + d*x)/2, 2])/(231*d
) + (4*a^3*(143*A + 105*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(231*d) + (8*a^3*(44*A + 35*C)*Cos[c + d*x]^(3/2)*
Sin[c + d*x])/(385*d) + (2*C*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3*Sin[c + d*x])/(11*d) + (4*C*Cos[c + d*x
]^(3/2)*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(33*a*d) + (2*(33*A + 35*C)*Cos[c + d*x]^(3/2)*(a^3 + a^3*Cos
[c + d*x])*Sin[c + d*x])/(231*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3125

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Si
mp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^
(-1)] && NeQ[m + n + 2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {2 \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (\frac {1}{2} a (11 A+3 C)+3 a C \cos (c+d x)\right ) \, dx}{11 a} \\ & = \frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {4 \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (\frac {9}{4} a^2 (11 A+5 C)+\frac {3}{4} a^2 (33 A+35 C) \cos (c+d x)\right ) \, dx}{99 a} \\ & = \frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d}+\frac {8 \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (\frac {45}{4} a^3 (11 A+7 C)+\frac {9}{2} a^3 (44 A+35 C) \cos (c+d x)\right ) \, dx}{693 a} \\ & = \frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d}+\frac {8 \int \sqrt {\cos (c+d x)} \left (\frac {45}{4} a^4 (11 A+7 C)+\left (\frac {45}{4} a^4 (11 A+7 C)+\frac {9}{2} a^4 (44 A+35 C)\right ) \cos (c+d x)+\frac {9}{2} a^4 (44 A+35 C) \cos ^2(c+d x)\right ) \, dx}{693 a} \\ & = \frac {8 a^3 (44 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{385 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d}+\frac {16 \int \sqrt {\cos (c+d x)} \left (\frac {693}{8} a^4 (7 A+5 C)+\frac {45}{8} a^4 (143 A+105 C) \cos (c+d x)\right ) \, dx}{3465 a} \\ & = \frac {8 a^3 (44 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{385 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d}+\frac {1}{5} \left (2 a^3 (7 A+5 C)\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{77} \left (2 a^3 (143 A+105 C)\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {4 a^3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (143 A+105 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{231 d}+\frac {8 a^3 (44 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{385 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d}+\frac {1}{231} \left (2 a^3 (143 A+105 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {4 a^3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (143 A+105 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{231 d}+\frac {4 a^3 (143 A+105 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{231 d}+\frac {8 a^3 (44 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{385 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3 \sin (c+d x)}{11 d}+\frac {4 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{33 a d}+\frac {2 (33 A+35 C) \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{231 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.13 (sec) , antiderivative size = 982, normalized size of antiderivative = 3.99 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {(7 A+5 C) \cot (c)}{10 d}+\frac {(2354 A+1953 C) \cos (d x) \sin (c)}{7392 d}+\frac {(18 A+25 C) \cos (2 d x) \sin (2 c)}{240 d}+\frac {(44 A+189 C) \cos (3 d x) \sin (3 c)}{4928 d}+\frac {C \cos (4 d x) \sin (4 c)}{96 d}+\frac {C \cos (5 d x) \sin (5 c)}{704 d}+\frac {(2354 A+1953 C) \cos (c) \sin (d x)}{7392 d}+\frac {(18 A+25 C) \cos (2 c) \sin (2 d x)}{240 d}+\frac {(44 A+189 C) \cos (3 c) \sin (3 d x)}{4928 d}+\frac {C \cos (4 c) \sin (4 d x)}{96 d}+\frac {C \cos (5 c) \sin (5 d x)}{704 d}\right )-\frac {13 A (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}-\frac {5 C (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{22 d \sqrt {1+\cot ^2(c)}}-\frac {7 A (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{20 d}-\frac {C (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{4 d} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*(A + C*Cos[c + d*x]^2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(-1/10*((7*A + 5*C)*Cot[c])/d + ((2354*A + 1953
*C)*Cos[d*x]*Sin[c])/(7392*d) + ((18*A + 25*C)*Cos[2*d*x]*Sin[2*c])/(240*d) + ((44*A + 189*C)*Cos[3*d*x]*Sin[3
*c])/(4928*d) + (C*Cos[4*d*x]*Sin[4*c])/(96*d) + (C*Cos[5*d*x]*Sin[5*c])/(704*d) + ((2354*A + 1953*C)*Cos[c]*S
in[d*x])/(7392*d) + ((18*A + 25*C)*Cos[2*c]*Sin[2*d*x])/(240*d) + ((44*A + 189*C)*Cos[3*c]*Sin[3*d*x])/(4928*d
) + (C*Cos[4*c]*Sin[4*d*x])/(96*d) + (C*Cos[5*c]*Sin[5*d*x])/(704*d)) - (13*A*(a + a*Cos[c + d*x])^3*Csc[c]*Hy
pergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]
*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin
[d*x - ArcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) - (5*C*(a + a*Cos[c + d*x])^3*Csc[c]*HypergeometricPFQ[{1/4
, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x -
ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]
]]])/(22*d*Sqrt[1 + Cot[c]^2]) - (7*A*(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{
-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[
Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1
 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]
*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(20*d)
 - (C*(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + Ar
cTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + Arc
Tan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcT
an[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 +
 Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(4*d)

Maple [A] (verified)

Time = 23.37 (sec) , antiderivative size = 436, normalized size of antiderivative = 1.77

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{3} \left (3360 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-14560 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (1320 A +25760 C \right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-4752 A -24080 C \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (6622 A +13090 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-2288 A -2940 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+715 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-1617 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+525 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-1155 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{1155 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(436\)
parts \(\text {Expression too large to display}\) \(1186\)

[In]

int((a+cos(d*x+c)*a)^3*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-4/1155*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(3360*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^12-14560*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10+(1320*A+25760*C)*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*
c)+(-4752*A-24080*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(6622*A+13090*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x
+1/2*c)+(-2288*A-2940*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+715*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1617*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+525*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1155*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1
/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.97 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (143 \, A + 105 \, C\right )} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (143 \, A + 105 \, C\right )} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 231 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 231 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (105 \, C a^{3} \cos \left (d x + c\right )^{4} + 385 \, C a^{3} \cos \left (d x + c\right )^{3} + 15 \, {\left (11 \, A + 42 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 77 \, {\left (9 \, A + 10 \, C\right )} a^{3} \cos \left (d x + c\right ) + 10 \, {\left (143 \, A + 105 \, C\right )} a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{1155 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/1155*(5*I*sqrt(2)*(143*A + 105*C)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(
2)*(143*A + 105*C)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 231*I*sqrt(2)*(7*A + 5*C)*a
^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 231*I*sqrt(2)*(7*A + 5*
C)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (105*C*a^3*cos(d*x
+ c)^4 + 385*C*a^3*cos(d*x + c)^3 + 15*(11*A + 42*C)*a^3*cos(d*x + c)^2 + 77*(9*A + 10*C)*a^3*cos(d*x + c) + 1
0*(143*A + 105*C)*a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/d

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**3*(A+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 1.95 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.35 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {2\,\left (A\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+A\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}-\frac {6\,A\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,A\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,C\,a^3\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a^3\,{\cos \left (c+d\,x\right )}^{13/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {13}{4};\ \frac {17}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{13\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^3,x)

[Out]

(2*(A*a^3*ellipticE(c/2 + (d*x)/2, 2) + A*a^3*ellipticF(c/2 + (d*x)/2, 2) + A*a^3*cos(c + d*x)^(1/2)*sin(c + d
*x)))/d - (6*A*a^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c +
d*x)^2)^(1/2)) - (2*A*a^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(s
in(c + d*x)^2)^(1/2)) - (2*C*a^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/
(7*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*
x)^2))/(3*d*(sin(c + d*x)^2)^(1/2)) - (6*C*a^3*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, c
os(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a^3*cos(c + d*x)^(13/2)*sin(c + d*x)*hypergeom([1/2, 13/4
], 17/4, cos(c + d*x)^2))/(13*d*(sin(c + d*x)^2)^(1/2))